https://brown-csci1l660.github.io

CS1660: Intro to Computer Systems Security
Spring 2026

Lecture 5: Integrity

Instructor: Nikos Triandopoulos
February 5, 2026

A7
N

0

BROWN

https://brown-csci1660.github.io/
https://brown-csci1660.github.io/
https://brown-csci1660.github.io/

L ast class

¢ Cryptography

¢ Encryption in practice

¢ Computational security, pseudo-randomness
o Stream & block ciphers, modes of operations for encryption, DES & AES

¢ Introduction to modern cryptography

Today

¢ Cryptography

¢ Symmetric-key encryption in practice
¢ Computational security, pseudo-randomness

e Stream & block ciphers, modes of operations for encryption, DES & AES
o Introduction to modern cryptography

¢ Reliable communication

¢ Message authentication codes (MACs)

+ Authenticated encryption

¢ Public-key encryption and digital signatures (introduction)

5.0 Introduction to
modern cryptography

Recall: Approach in modern cryptography

Formal treatment

¢ fundamental notions underlying the design & evaluation of crypto primitives
Systematic process

¢ A) formal definitions

¢ B) precise assumptions

¢ C) provable security

A) Formal definitions

abstract but rigorous description of security problem
¢ computing setting

¢ involved parties, communication model, core functionality
¢ underlying cryptographic scheme

¢ e.g., symmetric-key encryption scheme

¢ desired properties
¢ security related

¢ non-security related (e.g., correctness, efficiency, etc.)

Why formal definitions are important?

*

successful project management

+ good design requires clear/specific security goals
helps to avoid critical omissions or over engineering

provable security

& rigorous evaluation requires a security definition
helps to separate secure from insecure solutions

qualitative analysis/modular design

¢ thorough comparison requires an exact reference

+ helps to secure complex computing systems

B) Precise assumptions

abstract but rigorous description of security problem

¢ computing setting

¢ system set up, initial state, randomness, communication, timing
¢ adversary

¢ threat model, capabilities, limitations
¢ rules of the game

¢ key management, security of used tools, hardness of computational problems

B) Why precise assumptions are important?

¢ basis for proofs of security
¢ security holds under specific assumptions
¢ comparison among possible solutions

+ relations among different assumptions

+ stronger/weaker (i.e., less/more plausible to hold), “A implies B” or “A and B are equivalent”

+ refutable Vs. non-refutable
o flexibility (in design & analysis)
¢ validation — to gain confidence or refute

¢ modularity — to choose among concrete schemes that satisfy the same assumptions

+ characterization — to identify simplest/minimal/necessary assumptions
9

C) Provably security

Security

¢ subject to certain assumptions, a scheme is proved to be secure according to a
specific definition, against a specific adversary

¢ in practice the scheme may break if

¢ some assumptions do not hold or the attacker is more powerful

Insecurity

¢ ascheme is proved to be insecure with respect to a specific definition

¢ it suffices to find a counterexample attack

10

Why provable security is important?

Typical performance Worst case performance

& in some areas of computer science
formal proofs may not be essential
¢ simulate hard-to-analyze algorithm to

experimentally study
its performance on “typica

IH

inputs

& in practice, typical/average case occurs

11

¢ in cryptography and secure protocol design

formal proofs are essential

& “experimental” security analysis is not possible

I"

+ the notion of a “typical” adversary makes little

sense and is unrealistic

¢ in practice, worst case attacks will occur

an adversary will use any means
in its power to break a scheme

The 3 pillars in Cryptography

¢ We have already been familiar with all three!
¢ A) formal definitions
¢ B) precise assumptions

¢ C) provable security

¢ Let’s remind ourselves...

12

Probabilistic view of symmetric encryption

A symmetric-key encryption scheme is defined by

e amessage space M, |/M| > 1, and a triple (Gen, Enc, Dec)

¢ Gen: probabilistic key-generation algorithm, defines key space K
e Gen(1l") > ke XK (security parameter n)

¢ Enc: probabilistic encryption algorithm, defines ciphertext space C
e Encc XK x M — C, Enc(k, m) =Enc (m) > c€ C

¢ Dec: deterministic encryption algorithm
e Dec: KX x C— M , Dec(k, c) = Dec,(c) :=mE M or 1

13

Equivalent definitions of perfect security

1) a posteriori = a priori 2) C is independent of M

Forevery Dy, me Mandce C for Foreverym,m’e Mandc€ C,

which Pr[C=c] >0, it holds that it holds that
PfM=m | C=c]=Pr[M=m] Pr[Enc (m) =c] =Pr[Enc (m’) =c]
3) indistinguishability T
For every A4, it holds that
Dy — k
Pr[b’=b]=1/2 {0'1}_)b
Enc (my) — ¢,

14

OTP is perfectly secure (using Definition 2)

For all n-bit long messages m, and m, and ciphertexts ¢, it holds that
PrlEc(m;)=c] = Pr[E(m,)=c],
where probabilities are measured over the possible keys chosen by Gen.

Proof
¢ events “Ency(my) =c”, “m; @ K=c” and “K=m, & c” are equal-probable
¢ Kis chosen at random, irrespectively of m; and m,, with probability 2™

¢ thus, the ciphertext does not reveal anything about the plaintext

15

From perfect to computational EAV-security

+ perfect security: M, Enc, (M) are independent
¢ absolutely no information is leaked about the plaintext
¢ to adversaries that unlimited computational power
+ computational security: for all practical purposes, M, Enc,(M) are independent
+ a tiny amount of information is leaked about the plaintext (e.g., w/ prob. 2-128)
¢ to adversaries with bounded computational power (e.g., attacker invests 200ys)
o attacker’s best strategy remains ineffective
¢ random guess on secret key; or

¢ exhaustive search over key space (brute force attack)

16

Relaxing indistinguishability

Relax the definition of perfect secrecy — that is based on indistinguishability
¢ require that my, myare chosen by a PPT adversary

¢ require that no PPT adversary can distinguish Enc,(mg) from Enci(m,)

non-negligibly better than guessing

PPT

3) indistinguishability

T

Dy —k
Pr[bl:b]:llz +neg| {0 1}—)b

For every A4, it holds that

PPT Enci(myp) — ¢,
negl = = =
—— 17

Main security properties against eavesdropping

“plain” security
& protects against ciphertext-only attacks

¢ EAV-attack

“advanced” security

& protects against chosen plaintext attacks

¢ CPA-attack

18

plaintext

Hi, Bob.
Don’t invite
Eve to the
party!
Love, Alice

plaintext

ABCDEFG
HIJKLMNO
PQRSTUV
WXYZ.

>

key

gﬂcryptio
=HAtgorith

gﬁcwptio
gorith

ciphertext

ciphertext

Game-based computational CPA-security

encryption scheme MM = {M, (Gen, Enc, Dec)}

— m;
V/ v Enc(k,
2\ n T < = = ﬂ (k,)
\‘1- Q :“: h m ’ m
Gen(1") — k — 0, 111 chooses mg,m;
{0,1}—> b Cp s.t. [mg|=[my|
Enci(mp) — ¢ b’ >
<€

We say that (Enc,Dec) is CPA-secure if any PPT adversary A guesses b correctly with
probability at most 0.5 + €(n), where € is a negligible function

l.e., no PPT ‘A computes b correctly non-negligibly better than randomly guessing,
even when it learns the encryptions of messages of its choice
39

On CPA security

Facts

¢ Any encryption scheme that is CPA-secure is also CPA-secure for multiple encryptions
¢ CPA security implies randomized encryption — can you see why?

¢ EAV-security for multiple messages implies probabilistic encryption

20

Perfect secrecy & randomness

Role of randomness in encryption is integral
¢ in a perfectly secret cipher, the ciphertext doesn’t depend on the message
¢ the ciphertext appears to be truly random
¢ the uniform key-selection distribution is imposed also onto produced ciphertexts

¢ e.g., c =k XOR m (for uniform k and any distribution over m)

When security is computational, randomness is relaxed to “pseudorandomness”

¢ the ciphertext appears to be “pseudorandom”

¢ it cannot be efficiently distinguished from truly random

2

Tools for “OPT with pseudorandomness”

Stream cipher Block cipher
Uses a short key to encrypt long symbol Uses a short key to encrypt blocks of symbols
streams into a pseudorandom ciphertext into pseudorandom ciphertext blocks
¢ based on abstract crypto primitive of + based on abstract crypto primitive of
pseudorandom generator (PRG) pseudorandom function (PRF)
key
(next block) (block) @
STU OKD tty
key >

... Frywytovty

¥
... RESTUOKD state
) S >

22

Generic PRG-based symmetric encryption

¢ Fixed-length message encryption

O—n]

generator

e
23

{ Pseudorandom J

encryption scheme is plain-secure
as long as the underlying PRG is secure

Stream ciphers: Modes of operations

+ Bounded- or arbitrary-length message encryption

on-the-fly computation of new pseudorandom bits, no IV needed, plain-secure

Sy'nf:;z(;r;ized k A{Gj-[Part 1 E Part 2 i Part 3]
1 l
M ;——+Cq Mo+ +Co Mg-+»Csq
k
Unsy:;;";‘;znized Part 1] —{ Part 2 b‘{ ”‘"“ 2]
IV J.
M- Cy mg*. uCo m3_. ~C3

random IV used for every new message is sent along with ciphertext, advanced-secure

24

25

5.1 Pseudorandom functions
(or block ciphers)

Block ciphers

key
(next block) (block) 3
STU OKD =

Plaintext

26

Realizing ideal block ciphers in practice

We want a random mapping of n-bit inputs to n-bit outputs

¢ there are ~¥2”(n2") possible such mappings | Lo .

¢ none of the above can be implemented in practice

Instead, we use a keyed function F, : {0,1}" = {0,1}"

¢ indexed by a t-bit key k T I T
¢ there are only 2t such keyed functions l'

¢ arandom key selects a
“random-enough” mapping Fk
or a pseudorandom function

y = Fy(x)

%

Generic PRF-based symmetric encryption

¢ Fixed-length message encryption

Random string r

A

Pseudorandom
function

O—n

encryption scheme is advanced-secure
as long as the underlying PRF is secure

I Ciphertext

28

Generic PRF-based symmetric encryption (cont.)

+ Arbitrary-length message encryption

¢ specified by a mode of operation for using an underlying stateless block cipher,
repeatedly, to encrypt/decrypt a sequence of message blocks

29

30

5.2 Modes of operations
(of block ciphers)

Block ciphers: Modes of operations (l)

¢ OFB — output feedback v

¢ uniform IV

¢ no need message length to be multiple of n

+ resembles synchronized stream-cipher mode M —h

¢ CPA-secure if F, is PRF

31

Block ciphers: Modes of operations (ll)

¢ CTR —counter mode

*

AN A AR R o

uniform ctr

no need message length to be multiple of n
resembles synchronized stream-cipher mode
CPA-secure if F, is PRF

no need for F, to be invertible

parallelizable

32

ctr ctr+1

ctr+2

ctr+3

Block ciphers: Modes of operations (lll)

¢ ECB - electronic code book
¢ insecure, of only historic value
¢ deterministic, thus not CPA-secure

¢ actually, not even EAV-secure

33

Electronic Code Book (ECB)

¢ The simplest mode of operation
+ block P[i] encrypted into ciphertext block C[i] = Enc,(P[i])
+ block CJi] decrypted into plaintext block M[i] = Dec,(C[i])

Plaintext Plaintext Plaintext

[I 1 1
v v v

Block Cipher Block Cipher Block Cipher

Key - Encryption Key - Encryption Key - Encryption
v v v

[I L1 L1

Ciphertext Ciphertext Ciphertext

Electronic Codebook (ECB) mode encryption

34

Strengths & weaknesses of ECB

Strengths

* very simple

¢ allows for parallel encryptions
of the blocks of a plaintext

¢ can tolerate the loss or
damage of a block

Weaknesses

35

& poor security

+ produces the same ciphertext on the
same plaintext (under the same key)

¢ documents and images are not suitable
for ECB encryption, since patterns in the
plaintext are repeated in the ciphertext

. eg, ECB

Block ciphers: Modes of operations (IV)

¢ CBC—cipher block chaining
¢ CPA-secure if F, a permutation

¢ uniform IV

¢ otherwise security breaks

¢ Chained CBC

+ use last block ciphertext of current
message as |V of next message

¢ saves bandwidth but not CPA-secure

36

v

A%

m,
|

-

v
C

Cipher Block Chaining (CBC) [or chaining]

Alternatively, the previous-block ciphertext is “mixed” with the current-block plaintext

¢ e.g., using XOR
¢ each block is encrypted as C[i] = Ency (C[i —1] @ PJi]),
¢ each ciphertext is decrypted as P[i] = C[i —1] @ Dec, (C[i])

¢ here, C[0] = IV is a uniformly random initialization vector that is transmitted separately

P[1] P[2] P[1] P[2]

CBC

C[1] C[2] C[1] C[2]
37

Notes on modes of operation

¢ block length matters
¢ if small, IV or ctr can be “recycled”
¢ |V are often misused

¢ e.g., reused or not selected uniformly at random

+ in this case, CBC is a better option than OFB/CTR

38

39

5.3 (Stream & block)
Ciphers in practice

Recall: Stream ciphers

key

RESTUOKD | i istate - .. rrywytovty

40

Recall: Block ciphers

key
(next block) (block) 3
STU OKD =

41

Techniques used in practice for symmetric encryption

¢ Substitution
¢ exchanging one set of bits for another set
¢ Transposition
¢ rearranging the order of the ciphertext bits
¢ to break any regularities in the underlying plaintext
¢ Confusion
¢ enforcing complex functional relationship between the plaintext/key pair & the ciphertext
¢ e.g, flipping a bit in plaintext or key causes unpredictable changes to new ciphertext
¢ Diffusion
o distributes information from single plaintext characters over entire ciphertext output

¢ e.g., even small changes to plaintext result in broad changes to ciphertext

42

Substitution boxes

substitution can also be done on binary numbers

+ such substitutions are usually described by substitution boxes, or S-boxes

00 01 10 11 0 1 2 3
00 | 0011 0100 1111 0001 0| 3 8 15 1
01 | 1010 0110 0101 1011 1 (10 6 5 11
10 | 1110 1101 0100 0010 2114 13 4 2
11 | 0111 0000 1001 1100 3 7 0 9 12

(a) (b)

Figure 8.3: A 4-bit S-box (a) An S-box in binary. (b) The same S-box in
decimal.

43

Brute-force attacks against stream/block ciphers

Brute-force attack amounts to checking all possible 2t seeds/keys

¢ Due to confusion & diffusion, for stream/block ciphers, by construction
the key cannot be extracted even if a valid plaintext/ciphertext pair is captured

¢ Thus, as expected, the longer the key size the stronger the security

44

Stream Vs. Block ciphers

Stream Block
Advantages e Speed of e High diffusion
transformation e Immunity to
e [.ow error insertion of
propagation symbol
Disadvantages e Low diffusion e Slowness of
e Susceptibility to encryption
malicious e Padding
insertions and e Error
modifications propagation

45

46

5.4 Block ciphers in
practice: DES & AES

DES: The Data Encryption Standard

¢ Symmetric block cipher

¢ Developed in 1976 by IBM for the US National Institute of Standards and
Technology (NIST)

¢ Employs substitution & transposition, on top of each other, for 16 rounds
¢ block size = 64 bits, key size = 56 bits

¢ Strengthening (since 56-bit security is not considered adequately strong)
¢ double DES: E(k,, E(k;, m)), not effective!

o triple DES: E(ks, E(k,, E(k;, m))), more effective
¢ two keys, i.e., ki=ks;, with E-D-E pattern, 80-bit security
¢ three keys with E-E-E pattern, 112-bit security

47

DES: Security strength

Form

Operation

Properties

Strength

DES

Encrypt with one key

56-bit key

Inadequate for high-
security applications by
today’s computing
capabilities

Double DES

Encrypt with first key;
then encrypt result with
second key

Two 56-bit keys

Only doubles strength of
56-bit key version

Two-key triple
DES

Encrypt with first key,
then encrypt (or decrypt)
result with second key,
then encrypt result with
first key (E-D-E)

Two 56-bit keys

Gives strength equivalent
to about 80-bit key (about
16 million times as strong
as 56-bit version)

Three-key
triple DES

Encrypt with first key,
then encrypt or decrypt
result with second key,
then encrypt result with
third key (E-E-E)

Three 56-bit keys

Gives strength equivalent
to about 112-bit key
about 72 quintillion
(72*1015) times as strong
as 56-bit version

48

DES: High-level view

64-bit plaintext 64-b1it plaintext

DES
cipher

56-bit key —— > —
reverse cipher

Encryption

64-bit ciphertext

64-bit ciphertext

49

Decryption

DES: Basic structure

64-bit plaintext

h 4 DES
Initial permutation
Round 1 D
oun I© 48t 5
=
I K >
Round 2 I: 2. 5h
| 48-bit = |« 56-bit cipher key
=2
. . =)
o o g
I K6 =~
R dl1e6 <
oun I© 48t

Final permutation

A 4

64-bit ciphertext

50

DES: Initial and final permutations

+ Straight P-boxes that are inverses of each other w/out crypto significance

1

Permutation

8 25 40 58 64
L o000 L o000 L o000 L o0
Initial
T eee T (XX T eee T eoe
8 25 40 58 64

Initial Permutation

Final Permutation

2
1 2

16 Rounds

8 25 40 58 64

58
60
62
64
57
59
6l
63

50
52
54
56
49
51
53
55

42
44
46
48
41
43
45
47

34
36
38
40
33
35
37
39

26
28
30
32
25
27
29
31

18
20
22
24
17
19
21
23

10
12
14
16
09
11
13
15

02
04
06
08
01
03
05
07

40
39
38
37
36
35
34
33

08
07
06
05
04
03
02
01

48
47
46
45
44
43
42
41

16
15
14
13
12
11
10
09

56
55
54
53
52
51
50
49

24
23
22
21
20
19
18
17

64
63
62
61
60
59
58
57

32
31
30
29
28
27
26
25

1 2

51

1 2
...L X N] L [XX] L L X] L [X]
Final
‘ Permutation
.ooT XX} T XX} T XX} T XX}
8 25 40 58 64

DES: Round via Feistel network

32 bits 32 bits F(Ry . Ky) In
| Ly, | Ry, | J 32 bits
[——————~— — — — — / Expansion P-box \
: 3 T ® : 48 bits
| g ! | S (R, Kyp) = i Ky XOR (+)=< Ky (48 bits)
% i = C_D(--------- : : S-Boxes 48 bits
ad | (SISISISISISIESIES]
| & ' 32 bits
| § >< I | v
!_ _ _VJ ___________ = J' | Straight P-box
3 v 32 bits
| L, | R, | 1
32 bits 32 bits Out

o DES uses 16 rounds, each applying a Feistel cipher
o L(i)=R(i-1)

+ R(i) = L(i-1) XOR f (K(i),R(i-1)),
where f applies a 48-bit key to the rightmost 32 bits to produce a 32-bit output

52

DES: Low-level view

¢ Expansion box

¢ since R,_;is a 32-bit input & K, is a 48-bit key,
we first need to expand R,_; to 48 bits

¢ S-box

¢ where real mixing (confusion) occurs

o DES uses 8 6-to-4 bits S-boxes
48-bit input
Array of S-Boxes

J (R, Kyp) In

’32 bits

/ Expan51on P-box \

48 bits

XOR (+)=

48 bits
S-Boxes

ISISISISISISISIS]

32 bits

A 4

| Straight P-box

32 bits

v

K, (48 bits)

32- b1t output
53

A4

A

DES: S-box in detail

bit1l bit2 bit3 bit4 bit5 bit 6

0 / Z 3 4 5 () 7 8 9 10 11 12 /3 14 15
() 14 04 13 01 02 15 11 08 03 10 06 12 05 09 00 o7
/ 00 15 07 04 14 02 13 10 03 06 12 11 09 05 08
2 04 01 14 08 13 06 02 11 15 12 09 07 03 10 05 00
3 15 12 08 02 04 09 01 07 05 11 03 14 10 00 06 13

54

AES: Advanced Encryption System

¢ symmetric block cipher, a.k.a. Rijndael

|S||S||S||S|14BylcSub

¢ developed in 1999 by independent Dutch
cryptographers in response to the 1997 NIST’s 2. Shift Row
public call for a replacement to DES

¢ still in common use Repeat [
¢ on the longevity of AES HpEnERE N
Columns
o larger key sizes possible to use [] []

+ not known serious practical attacks HuEnE

4. Add Round

Key

55

AES: Key design features

¢ use of substitution, confusion & diffusion
¢ block size is 128 bits

¢ variable-length keys: key size is 128, 192 or 256 bits
¢ variable number of rounds: 10, 12 or 14 rounds for keys of resp. 128, 192 or 256 bits
¢ depending on key size, yields ciphers known as AES-128, AES-192, and AES-256

mput___JC——>| AES |T——> [outpu
128 bits 128 bits

Key
128, 192 or 256 bits

56

AES: Basic structure

128-bit plaintext

AES
1 Round keys
Pre-round P (128 bits)
transformation T K, < Cipher key
| (128, 192, or 256 bits)
Round 1 < =
oun K 8
' g Nr | Key size
Round 2 < < 5 10 128
: g
. . M 12 192
* ° 14 256
Round N, y Relationship between
(slightly different) T Ky, number of rounds
) and cipher key size

Y

128-bit ciphertext

57

AES: Basic structure (cont.)

DES vs. AES

DES AES
Date designed 1976 1999
Block size 64 bits 128 bits

Key length 56 bits (effective length); up to 112 128, 192, 256 (and possibly more)
bits with multiple keys bits

Operations 16 rounds 10, 12, 14 (depending on key

length); can be increased

Encryption Substitution, permutation Substitution, shift, bit mixing

primitives

Cryptographic Confusion, diffusion Confusion, diffusion

primitives

Design Open Open

Design rationale Closed Open

Selection process Secret Secret, but open public comments

and criticisms invited

Source

IBM, enhanced by NSA

Independent Dutch cryptographers

59

60

5.1 Message
authentication

Recall: Integrity

Fundamental security property
¢ an asset is modified only by authorized parties

¢ “1” in the CIA triad

“computer security seeks to prevent unauthorized viewing (confidentiality)
or modification (integrity) of data while preserving access (availability)”

Alteration
= <4b>
- - Original connection Anmid
¢ main t-hreat against E- = > WRSY
integrity of e ==

New connection

in-transit data

¢ e.g., Attacker-In-The-Middle attack

e
)

61 Maninthe middle, Phisher,
Or aNNoNYMous proxy

Security problems studied by modern cryptography

o Classical cryptography: message encryption

+ early crypto schemes tried to provide secrecy / confidentiality

¢ Modern cryptography: wide variety of security problems

¢ today we need to study a large set of security properties beyond secrecy

¢ The sibling of message encryption: message authentication

¢ another cornerstone of any secure system aiming to provide authenticity & integrity

62

Message authentication: Motivation

Information has value, but only when it is correct
¢ random, incorrect, inaccurate or maliciously altered data is useless or harmful
¢ message authentication = message integrity + authenticity

+ while in transit (or at rest), no message should be modified by an outsider

¢ no outsider can impersonate the stated message sender (or owner)

e itis often necessary / worth to protect critical / valuable data
¢ message encryption

¢ while in transit (or at rest), no message should be leaked to an outsider

63

Example 1

Secure electronic banking

+ abank receives an electronic request to transfer $1,000 from Alice to Bob
Concerns

¢ who ordered the transfer, Alice or an attacker (e.g., Bob)?

¢ is the amount the intended one or was maliciously modified while in transit?

& adversarial Vs. random message-transmission errors

¢ standard error-correction is not sufficient to address this concern

64

Example 2

Web browser cookies

¢ a user is performing an online purchase at Amazon

¢ a “cookie” contains session-related info, as client-server HTTP traffic is stateless

¢ stored at the client, included in messages sent to server
¢ contains client-specific info that affects the transaction

¢ e.g., the user’s shopping cart along with a discount due to a coupon

Concern

¢ was such state maliciously altered by the client (possibly harming the server)?

65

Integrity of communications / computations

Highly important
¢ any unprotected system cannot be assumed to be trustworthy w.r.t.
+ origin/source of information (due to impersonation attacks, phishing, etc.)
¢ contents of information (due to man-in-the-middle attacks, email spam, etc.)
¢ overall system functionality
Prevention Vs. detection
¢ unless system is “closed,” adversarial tampering with its integrity cannot be avoided!

¢ goal: identify system components that are not trustworthy

¢ detect tampering or prevent undetected tampering
¢ e.g., avoid “consuming” falsified information

66

Encryption does not imply authentication

A common misconception
“since ciphertext c hides message m, Mallory cannot meaningfully modify m via c”
Why is this incorrect?
+ all encryption schemes (seen so far) are based on one-time pad, i.e., masking via XOR
¢ consider flipping a single bit of ciphertext c; what happens to plaintext m?
¢ such property of one-time pad does not contradict the secrecy definitions
Generally, secrecy and integrity are distinct properties

¢ encrypted traffic generally provides no integrity guarantees

67

68

5.2 Message
authentication codes
(MACs)

Problem setting: Reliable communication

Two parties wish to communicate over a channel
+ Alice (sender/source) wants to send a message m to Bob (recipient/destination)
Underlying channel is unprotected

o Mallory (attacker/adversary) can manipulate any sent messages

¢ e.g., message transmission via a compromised router

Mallory “@g

Alice m == >

69

Solution concept: Symmetric-key message authentication

Main idea

¢ secretly annotate or “sign” message so that it is unforgeable while in transit
¢ Alice tags her message m with tag t, which is sent along with plaintext m
¢ Bob verifies authenticity of received message using tag t
¢ Mallory can manipulate m, t but “cannot forge” a fake verifiable pair m’, t’

¢ Alice and Bob share a secret key k that is used for both operations

k k
l Mallory “@' N l

: m, t m’, t’
Alice m-— tag / sigh — - ‘ > — verify

70

ACCEPT

Security tool: Message Authentication Code

Abstract cryptographic primitive, a.k.a. MAC, defined by

¢ a message space M; and

¢ atriplet of algorithms (Gen, Mac, Vrf)
¢ Gen, Mac are probabilistic algorithms, whereas Vrf is deterministic
¢ Gen outputs a uniformly random key k (from some key space K)

A////////////// o
k
l Mallory “@g

m, t
Alice | — Mac — . .I'

M: set of possible
messages

7zl

ACCEPT

Desired properties for MACs

By design, any MAC should satisfy the following
¢ efficiency: key generation & message transformations “are fast”
& correctness: for all m and k, it holds that Vrf,(m, Mac,(m)) = ACCEPT

& security: one “cannot forge” a fake verifiable pair m’, t’

/ Gen \
Il(Mallory “@g ll(

: m, t m, t
Alice mMm—| Mac — - ‘ > Vrf

M: set of possible
messages

72

ACCEPT

Main application areas

Secure communication Secure storage
+ verify authenticity of messages + verify authenticity of files
sent among parties outsourced to the cloud
+ assumption ¢ assumption
¢ Alice and Bob securely generate, o Alice securely generates and stores
distribute and store shared key k key k
o attacker does not learn key k o attacker does not learn key k
Mallory Mallory
k-
Alice Alice < > —

messages files
73

Conventions

Random key selection

+ typically, Gen selects key k uniformly at random from the key space K

Canonical verification
¢ when Mac is deterministic, Vrf typically amounts to re-computing the tag t

¢ Vrfi(m,t): 1.t":=Mac(m) 2.ift=t/, output ACCEPT else output REJECT

¢ but conceptually the following operations are distinct

¢ authenticating m (i.e., running Mac) Vs. verifying authenticity of m (i.e., running Vrf)

74

MAC security

Attacker wins the game if 1. Vrf (m"t") = ACCEPT &
MAC scheme 2. m"notin 9

(Gen, Mac, Vrf)

Mac(k

Gen — k < Q = m]_, mz,

Maci(m;) — t; >

The MAC scheme is secure if any PPT “A wins the game only negligibly often.

75

ST

S o S o e e e SSes:
== e e SRR s
e e s e

= ’ e =

= s | e e
T e e e

= i oe = e 4%%%%
== = T “‘}'”-@075; s P g
e o ﬁ‘g‘:‘uf—“ e "’k S

e :
= S

e e e == == s e S EEss e s =
e e : S Sl SeSesae

= s
= e S Seesme o ee e

3&.
=

Recall: MAC

Abstract cryptographic primitive, a.k.a. MAC, defined by

¢ a message space M; and
¢ atriplet of algorithms (Gen, Mac, Vrf)

M: set of possible
messages

A////////////// o
k
l Mallory “@'

: m, t
Alice m— Mac —_— - ..I

75

ACCEPT

Recall: MAC security

Attacker wins the game if 1. Vrf (m"t") = ACCEPT &
MAC scheme 2. m"notin 9
(Gen, Mac, Vrf)

mq
T < Mac(k,)
{ /*-\ ,1.,2(t]_ ﬁﬂ-
»\‘\' \\ ,' m)
\ 2
Gen —> k (Q = m]_, mz,
t,
Mac(m;) — t; t -
m ,t
=

The MAC scheme is secure if any PPT “A wins the game only negligibly often.

78

Real-life attacker

In practice, an attacker may
¢ observe a traffic of authenticated (and successfully verified) messages
¢ manipulate (or often also partially influences) traffic
+ aims at inserting an invalid but verifiable message m”, t* into the traffic
¢ interesting case: forged message is a new (unseen) one

¢ trivial case: forged message is a previously observed one, a.k.a. a replay attack

¢ launch a brute-force attack (given that Mac,(m) — tis publicly known)

¢ given any observed pair m, t, exhaustively search key space to find the used key k

P45

Threat model

In the security game, Mallory is an adversary A who is
¢ “active” (on the wire)
¢ we allow A to observe and manipulate sent messages
¢ “well-informed”
¢ we allow A to request MAC tags of messages of its choice
¢ ‘“replay-attack safe”
& we restrict A to forge only new messages
» PPE
& we restrict A to be computationally bounded

¢ new messages may be forged undetectably only negligibly often

80

Notes on security definition

Is it a rather strong security definition?
¢ we allow A to query MAC tags for any message

¢ but real-world senders will authenticate only “meaningful” messages
¢ we allow A to break the scheme by forging any new message

¢ but real-world attackers will forge only “meaningful” messages

Yes, it is the right approach...

¢ message “meaningfulness” depends on higher-level application
¢ text messaging apps require authentication of English-text messages

¢ other apps may require authentication of binary files
+ security definition should better be agnostic of the specific higher application

81

Notes on security definition (Il)

Are replay attacks important in practice?
¢ absolutely yes: a very realistic & serious threat!
¢ e.g.,, what if a money transfer order is “replayed”?
Yet, a “replay-attack safe” security definition is preferable
¢ again, whether replayed messages are valid depends on higher-lever app
¢ Dbetter to delegate to this app the specification of such details
¢ e.g., semantics on traffic or validity checks on messages before they’re “consumed”
Eliminating replay attacks
¢ use of counters (i.e., common shared state) between sender & receiver

¢ use of timestamps along with a (relaxed) authentication window for validation

82

83

5.2.2 MAC constructions

Three generic MAC constructions

¢ fixed-length MAC
¢ direct application of a PRF for tagging
¢ limited applicability

¢ domain extension for MACs

¢ straightforward secure extension of fix-length MAC

¢ inefficient
¢ CBC-MAC

¢ resembles CBC-mode encryption

¢ efficient

84

. Fixed-length MAC

based on use of a PRF

¢ employ a PRF F, in the obvious way
to compute and canonically verify tags

¢ settagtto be the pseudorandom string
derived by evaluating F, on message m

secure, provided that F, is a secure PRF

85

€ <

I:k
v

y = Fi(x)

MAC scheme N
Gen(1"): {0,1} — k

Mac(m): set t = F (m)

Vrfy(m,t): return 1 iff t = Fi(m)

. Domain extension for MACs ()

suppose we have the previous fix-length MAC scheme

how can we authenticate a message m of arbitrary length?

naive approach m = $1 $2 Mgy

¢ pad m and view it as d blocks m;, m,, ..., my4 ‘1'

¢ separately apply MAC to block m; Fy Fi Fy
security issues t= ti=FR(my) t;=F(m,) tg = Fil(mg)

+ reordering attack; verify block index, t = F,.(m;]| |i)
¢ truncation attack; verify message length 6 = |[m|, t = F,(m;] |i] | §)

¢ mix-and-match attack; randomize tags (using message-specific fresh nonce)
86

2. Domain extension for MACs (lIl)

Final scheme
¢ assumes a secure MAC scheme for messages of size n
+ set tag of message m of size 6 at most 2"/ as follows

¢ choose fresh random nonce r of size n/4; view m as d blocks of size n/4 each

¢ separately apply MAC on each block, authenticating also its index, 6 and nonce r
SECUHTY r[121181 Imy r[[2]18]Im; r||d]|8]|mq
¢ extension is secure, if F, is a secure PRF ‘1’ ‘1' ‘1'
Fk Fk Fk

v v v

87 t= f, t]_, t2, td

3. CBC-MAC = -

2 m,
! }
Idea l l
¢ employ a PRF in a manner
similar to CBC-mode encryption Fi Fi Fi
Security —T— . , k]

¢ extension is secure, if
¢ F,is a secure PRF; and
¢ only fixed-length messages are authenticated

¢ messages of length equal to any multiple of n can be authenticated
¢ but this length need be fixed in advance

¢ insecure, otherwise

88

3. CBC-MAC Vs. previous schemes

¢ can authenticate longer messages
than basic PRF-based scheme (1)

m, m. m,
! |
BB

(| I l

t

¢ more efficient than
domain-extension MAC scheme (2)

Scheme (1)

Scheme (2)

Fi

|

t= Fk(m)

Y

(11]18][my r2]]6]]m;

v

89

Fy Fi
v v
ty, to,

rlld][8]]m;

v

F

3. CBC-MAC Vs. CBC-mode encryption

¢ crucially for their security

¢ CBC-MAC uses no IV (or uses an |V set to 0) and only the last PRF output
¢ CBC-mode encryption uses a random IV and all PRF outputs

¢ “simple”, innocent modification can be catastrophic...

m,

CBC-MAC
m,

|

—

!

m3
}

—

i

j i

90

CBC-mode encryption

m, m.
m—

v | |

v C, C» C,

91

5.3 Authenticated
encryption

Recall: Two distinct properties

Secrecy

¢ sensitive information has value
o if leaked, it can be risky

+ specific scope / general semantics
+ prevention

¢ does not imply integrity
¢ e.g., bit-flipping “attack”

Integrity

¢ correct information has value
+ if manipulated, it can harmful
o random Vs. adversarial manipulation

+ wider scope / context-specific semantics

source Vs. content authentication
¢ replay attacks
+ detection
+ does not imply secrecy
¢ e.g., user knows cookies’ “contents”

92

Recall: Yet, they are quite close...

Common setting

¢ communication (storage) over an “open,” i.e., unprotected, channel (medium)

Fundamental security problems

+ while in transit (at rest) @ ‘wﬂl
¢ no message (file) should be leaked to A =

¢ no message (file) should be modified by A ——

Core cryptographic protections
+ encryption schemes provide secrecy / confidentiality
¢ MAC schemes provide integrity / unforgeability

Can we achieve both at once in the symmetric-key setting? Yes!

SE

Authenticated Encryption (AE): Catch 2 birds w/ 1 stone

Cryptographic primitive that realizes an “ideally secure” communication channel
¢ motivation

¢ important in practice as real apps often need both

¢ good security hygiene

+ even if a given app “asks” only/more for secrecy or integrity than the other,
it’s always better to achieve both!

94

Three generic AE constructions

Constructions of a secure authenticated encryption scheme N,
¢ they all make use of

¢ a CPA-secure encryption scheme Mg = (Enc, Dec); and
¢ asecure MAC Ny, = (Mac, Vrf)

¢ which are instantiated using independent secret keys ke, km

¢ ..butthe order with which these are used matters!

05

Generic AE constructions (1)

1. encrypt-and-authenticate
¢ Enc.(m) — c; Mac,(m) — t; send ciphertext (c, t)
¢ if Deci(c) =m# fail and Vrf,,,(m,t) accepts, output m; else output fail
¢ insecure scheme, generally
¢ e.g., MAC tag t may leak information about m
¢ e.g., if MAC is deterministic (e.g., CBC-MAC) then Mg is not even CPA-secure
¢ usedin SSH

96

Generic AE constructions (2)

2. authenticate-then-encrypt
¢ Macy,(m) —t; Enc(m]|t) — c; send ciphertext ¢
o if Dec(c)=m||t# f£ail and Vrf,(m,t) accepts, output m; else output fail

¢ insecure scheme, generally

¢ usedinTLS, IPsec

S5

Generic AE constructions (3)

3. encrypt-then-authenticate (cf. “authenticated encryption”)
¢ Enc.(m) — c; Mac,(c) — t; send ciphertext (c, t)
o if Vrf(c,t) accepts then output Dec.(c) = m, else output fail

¢ secure scheme, generally (as long as Iy, is a “strong” MAC)

¢ usedin TLS, SSHv2, IPsec

98

Application: Secure communication sessions

An AE scheme I,; = (Enc, Dec) enables two parties to communicate securely

*

L 4

*

*

session: period of time during which sender and receiver maintain state
idea: send any message m as ¢ = Enc,(m) & ignore received c that don’t verify

security: secrecy & integrity are protected

remaining possible attacks
¢ re-ordering attack counters can be used to eliminate reordering/replays
¢ reflection attack directional bit can be used to eliminate reflections

¢ replay attack c = Enci(ba_slctragl |m); ctrpp++

Sis

5.4 Public-key encryption
& digital signatures

100

Recall: Principles of modern cryptography

(A) security definitions, (B) precise assumptions, (C) formal proofs

For symmetric-key message encryption/authentication

¢ adversary

¢ types of attacks %

o trusted set-up Alice m—»

¢ secret key is distributed securely |

+ secret key remains secret
ftrust basis @

Alice m—»

.
v
encrypt—> ¢ —— c—
< o
y
“Sign” —> M, t ————— 1, '—

¢ underlying primitives are secure
¢ PRG, PRF, hashing, ...
¢ e.g., block ciphers, AES, etc.

101

On “secret key is distributed securely”

Alice & Bob (or 2 individuals) must securely obtain a shared secret key

> strong assumption to accept

¢ “securely obtain”

¢ need of a secure channel

¢ “shared secret key” » challenging problem to manage

¢ too many keys

i % ~> Public-key cryptography to the rescue...

102

On “secret key is distributed securely”

Alice & Bob (or 2 individuals) must securely obtain a shared secret key

» (A) strong assumption to accept

¢ “securely obtain”

¢ requires secure channel for key distribution (chicken & egg situation)

¢ seems impossible for two parties having no prior trust relationship

¢ not easily justifiable to hold a priori

> (B) challenging problem to manage

¢ “shared secret key”

¢ requires too many keys, namely O(n?2) keys for n parties to communicate

¢ imposes too much risk to protect all such secret keys

+ entails additional complexities in dynamic settings (e.g., user revocation)

103

Alternative approaches?

Need to securely distribute, protect & manage many session-based secret keys

¢ (A) for secure distribution, just “make another assumption...”

¢ employ “designated” secure channels

¢ physically protected channel (e.g., meet in a “sound-proof” room)

¢ employ “trusted” party

¢ entities authorized to distribute keys (e.g., key distribution centers (KDCs))

¢ (B) for secure management, just ‘live with it!”

» Public-key cryptography to the rescue...

104

disclaimer on names
private = secret

Public-key (or asymmetric) cryptography

Goal: devise a cryptosystem where key setup is “more” manageable

Main idea: user-specific keys (that come in pairs)
¢ user U generates two keys (U, Ug)

o U, is public — it can safely be known by everyone (even by the adversary)
¢ U, is private — it must remain secret (even from other users)
Usage
¢ employ public key U for certain “public” tasks (performed by other users)

¢ employ private key U, for certain “sensitive/critical” tasks (performed by user U)

Assumption

¢ public-key infrastructure (PKI): public keys become securely available to users
105

From symmetric to asymmetric encryption

secret-key encryption
H
main limitation k w k
. in limitati @ . S . @

& session-specific keys Alice m—>encrypt— ¢ o > c—decrypt

public-key encryption

Bobpy "@, Bobyy &
& = . T 2

¢ user-specific keys “sensitive” task

¢ messages encrypted by receiver’s PK can (only) be decrypted by receiver’s SK

106

From symmetric to asymmetric message authentication

secret-key message authentication (or MAC)

¢ main limitation k “@r \ K &
' v | G

& session-specific keys Alice m—> “sign” —> m,t ——ele——3 m, t —> verify —> , Bob

acc

public-key message authentication

(or digital signatures) Alicegy \5@ | Alicepy __. ~
' 5 L

+ main flexibility Alice m—» Sign > m,0—mmalemdm, o —| verify —> Bo

¢ user-specific keys “critical” task acc

¢ (only) messages signed by sender’s SK can be verified by sender’s PK

107

Thus: Principles of modern cryptography

(A) security definitions, (B) precise assumptions, (C) formal proofs

For asymmetric-key message encryption/authentication

¢ adversary

¢ types of attacks %

o trusted set-up Alice m—»

¢ PKlis needed |

¢ trust basis

¢ secret keys remain secret @ Alicesy “@,

Alice m—»

BOpr w BObSK (o
v v -
encrypt—> ¢ — >» c—>decrypt—> m Bob
A“CEPK = (o
: J o
“Sign” > M, t —e—_—— m, t—> verify —> , Bob

¢ underlying primitives are secure

¢ typically, algebraic computationally-hard problems

¢ e.g., discrete log, factoring, etc. -~

acc

General comparison

Symmetric crypto

¢ key management
¢ less scalable & riskier
¢ assumptions
secret & authentic communication
& secure storage
¢ primitives
¢ generic assumptions
¢ more efficiently in practice

Asymmetric crypto

¢ key management
¢ more scalable & simpler
¢ assumptions
+ authenticity (PKI)
secure storage
¢ primitives
¢ math assumptions
less efficiently in practice (2-3 0.0.m.)

109

Public-key infrastructure (PKiI)

A mechanism for securely managing, in a dynamic multi-user setting,
user-specific public-key pairs (to be used by some public-key cryptosystem)

¢ dynamic, multi-user

¢ the system is open to anyone; users can join & leave
¢ user-specific public-key pairs

¢ each user U in the system is assigned a unique key pair (Uy, Ug)
¢ secure management (e.g., authenticated public keys)

+ public keys are authenticated: current U, of user U is publicly known to everyone

Very challenging to realize
¢ currently using digital certificates; ongoing research towards a better approach...

110

Overall: Public-key encryption & signatures

Assume a trusted set-up

¢ public keys are securely available (PKI) & secret keys remain secret

Q

Bk
'

Alice m—

encrypt

Bsk
|

Q&

Alice m—

decrypt

ﬁ
m Bob

—>

pk
v

verify

~

-
— Bob

/

acc

Secret-key vs. public-key encryption

Secret Key (Symmetric) Public Key (Asymmetric)
Number of 1 2
keys
Key size 56-112 (DES), 128-256 (AES) Unlimited; typically no less than 256;
(bits) 1000 to 2000 currently considered
desirable for most uses
Protection of | Must be kept secret One key must be kept secret; the
key other can be freely exposed
Best uses Cryptographic workhorse. Secrecy and Key exchange, authentication,
integrity of data, from single characters signing
to blocks of data, messages and files
Key Must be out-of-band Public key can be used to distribute
distribution other keys
Speed Fast Slow, typically by a factor of up to
10,000 times slower than symmetric
algorithms

112

Public-key cryptography: Early history

Proposed by Diffie & Hellman
¢ documented in “New Directions in Cryptography” (1976)
¢ solution concepts of public-key encryption schemes & digital signatures

¢ key-distribution systems
¢ Diffie-Hellman key-agreement protocol
¢ “reduces” symmetric crypto to asymmetric crypto
Public-key encryption was earlier (and independently) proposed by James Ellis

+ classified paper (1970)

¢ published by the British Governmental Communications Headquarters (1997)

¢ concept of digital signature is still originally due to Diffie & Hellman

113

